

ДОПОЛНИТЕЛЬНАЯ ПРОФЕССИОНАЛЬНАЯ ПРОГРАММА

ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

«НОВЕЙШИЕ ПРАКТИКИ ЗАКАНЧИВАНИЯ И PEMOHTA ГОРИЗОНТАЛЬНЫХ И MHOГОСТВОЛЬНЫХ СКВАЖИН. RIGLESS-TEXHОЛОГИИ»

Разработали:

преподаватель А.А. Завьялов преподаватель Д.С. Тихоновский

СОДЕРЖАНИЕ

1.	ОБЩАЯ ХАРАКТЕРИСТИКА ПРОГРАММЫ
	1.1. Нормативные основания разработки программы
	1.2. Цель
	1.3. Задачи
	1.4. Планируемые результаты обучения
	1.5. Характеристика профессиональной деятельности слушателей
2.	СОДЕРЖАНИЕ ПРОГРАММЫ
	2.1. Учебный план
	2.2. Рабочие программы (тематическое содержание) модулей
	2.3. Календарный учебный график
3.	ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ
	3.1. Категория слушателей
	3.2. Технологии и методы обучения
	3.3. Учебно-методическое обеспечение
	3.4. Материально-техническое обеспечение
	3.5. Кадровое обеспечение
	3.6. Информационное обеспечение
	3.7. Электронные ресурсы
	3.8. Документ о квалификации
4.	ОЦЕНКА КАЧЕСТВА ОСВОЕНИЯ ПРОГРАММЫ
	4.1. Формы аттестации
	4.2. Оценочные материалы
	4.3. Оценка результатов аттестации

ОБЩАЯ ХАРАКТЕРИСТИКА ПРОГРАММЫ

Нормативные основания разработки программы:

- 1. Федеральный закон № 273-ФЗ «Об образовании в Российской Федерации» от $29.12.2012~\Gamma$.
- 2. Приказ Министерства образования и науки РФ № 499 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным профессиональным программам» от 01.07.2013 г.
- 3. Профессиональные стандарты Код 19 «Добыча, переработка, транспортировка нефти и газа».
- 4. Проекты примерных образовательных программ по направлениям бакалавриата 210000 «Прикладная геология, горное дело, нефтегазовое дело и геодезия».
- 5. ФГОС ВО по направлениям бакалавриата и магистратуры 210000 «Прикладная геология, горное дело, нефтегазовое дело и геодезия».

Цель:

совершенствование профессиональных компетенций специалистов в сфере заканчивания скважин, оптимального использования горизонтальных, интеллектуальных и многоствольных скважин при разработке месторождений, прогнозировании проблем эксплуатации скважин до спуска заканчивания, подбора экономически эффективных решений ремонта скважин и методов проведения внутрискважинных работ на действующих объектах.

Задачи:

- изучить возможности использования горизонтальных скважин для разработки различных типов месторождений;
- детально рассмотреть внутрискважинное оборудование нижнего, промежуточного и верхнего заканчиваний, устьевое оборудование и насосно-компрессорные трубы;
- проработать многоствольное заканчивание, уровни TAML и внутрискважинное оборудование для его строительства;
 - понять технологии забуривания боковых стволов в действующих скважинах;
- проанализировать практический опыт проблем, возникающих при эксплуатации горизонтальных и многоствольных скважин;
- детально исследовать возможности интеллектуального заканчивания скважин и внутрискважинного оборудования для его практической реализации;
- освоить активные и пассивные устройства регулирования притока, управляемые хвостовики, оптоволоконные системы мониторинга;
- научиться подбирать оборудование для ремонта горизонтальных скважин, в том числе скважин с большим отходом от вертикали;
- ознакомиться с новейшими rigless-технологиями для исследований и ремонтов скважин;
 - усвоить особенности стимулирования пласта в горизонтальных скважинах;
- овладеть навыками проведения экономической оценки выбора типа закачивания, ремонта и внутрискважинных работ с учетом всего жизненного цикла скважины.

Планируемые результаты обучения:

усовершенствованные профессиональные компетенции, выраженные в знаниях и способностях:

- проводить подбор необходимой конструкции и заканчивания скважины исходя из особенностей конкретного месторождения;
- осуществлять выбор типа узла разветвления и внутрискважинного оборудования для многоствольных скважин;
- планировать и реализовать забуривание боковых стволов в действующих скважинах;
- выбирать внутрискважинное оборудование для интеллектуального заканчивания скважин:
- планировать и снижать риски при эксплуатации горизонтальных и многоствольных скважин на весь период их жизни;
 - подбирать тип хвостовика исходя из геологических и экономических требований:
- выбирать нижнее, промежуточное и верхнее заканчивание для типовой и индивидуальной скважины;
- проводить инженерные расчеты по спуску внутрискважинного оборудования в скважины с большим отходом от вертикали;
- подбирать технологии и оборудования для ремонта горизонтальных и многоствольных скважин;
- выбирать тип оборудования для мностадийного гидроразрыва пласта с учетом всего цикла работы скважин;
- осуществлять подбор внутрискважинной технологии для стимулирования добычи углеводородов;
- проводить экономические расчеты для подбора оптимального типа заканчивания или ремонта скважины.

Характеристика профессиональной деятельности слушателей:

Область профессиональной деятельности слушателей, освоивших программу курса повышения квалификации, включает реализацию и управление технологическими процессами и производством, методологию и методы проектирования и конструирования, научные исследования и разработки в сегменте топливной энергетики, в т.ч. освоение месторождений, транспортирование и хранение углеводов, исследование недр и поверхности Земли, рациональное использование и охрана земельных и углеводородных ресурсов и др.

Объектами профессиональной деятельности слушателей являются технологические процессы и устройства для строительства, ремонта, восстановления, добычи, промыслового контроля, транспортирования, хранения и сбыта нефти, нефтепродуктов и сжиженных газов, поверхность и недра Земли, геодинамические явления и процессы, территориально-административные образования, информационные системы и инновационные технологии и др.

Виды профессиональной деятельности слушателей: производственно-технологическая, организационно-управленческая, экспериментально-исследовательская, проектная, проектно-изыскательская, научно-исследовательская.

СОДЕРЖАНИЕ ПРОГРАММЫ

Учебный план дополнительной профессиональной программы определяет перечень, трудоемкость, последовательность и распределение учебных модулей, иных видов учебной деятельности обучающихся и формы аттестации.

Учебный план:

N₂	Наименование модулей		Форма		
	•	Всего	Количество часов Всего в том числе:		аттестации
			лекционные занятия	практические занятия	
1	Типы скважин. Области применения и основные различия. Скважины с большим отходом от вертикали.	3	3	-	Текущий контроль
2	Внутрискважинное и устьевое оборудование. Расчет притока нефти в скважину. Экономика заканчивания скважин.	5	4	1	Текущий контроль
3	Многоствольные и многозабойные скважины, уровни ТАМL. Забуривание боковых стволов в действующих скважинах.	4	3	1	Текущий контроль
4	Интеллектуальные скважины. Применение электрических и гидравлических клапанов контроля притока.	4	3	1	Текущий контроль
5	Пассивные и активные устройства регулирования притока. Технологии управляемых хвостовиков.	5	4	1	Текущий контроль
6	Оптоволоконные системы. Подготовка и расчеты для спуска в горизонтальные скважины. Сравнение различных типов заканчивания	3	2	1	Текущий контроль
7	Особенности работы горизонтальных скважин при длительной эксплуатации	2	2	-	Текущий контроль
8	Текущие и капитальные ремонты горизонтальных скважин. Подбор оборудования. Координация сервисов.	6	4	2	Текущий контроль
9	Внутрискважинные исследования и работы ка койлтюбинге и каротажном кабеле	4	4	-	Текущий контроль
10	Особенности проведения стимулирования горизонтальных скважин. Отказ от ТКРС в пользу rigless-технологий.	3	2	1	Текущий контроль
11	Итоговая аттестация	1	-	1	Тестирование
	ИТОГО	40	31	9	

Рабочие программы (тематическое содержание) модулей:

Типы скважин. Области применения и основные различия. Скважины с большим отходом от вертикали.

- преимущества и недостатки различных типов скважин (вертикальные, наклоннонаправленные скважины и горизонтальные скважины);
 - назначение, преимущества и недостатки скважин с большим отходом от вертикали.

Внутрискважинное и устьевое оборудование. Расчет притока нефти в скважину. Экономика заканчивания скважин.

- назначение, состав и основные характеристики внутрискважинного оборудования (нижнее заканчивание (хвостовик), промежуточное заканчивание, верхнее заканчивание, в том числе для механизированной добычи нефти);
 - особенности устьевого оборудования;
 - подбор насосно-компрессорных труб;
- особенности расчетов притока горизонтальных и многоствольных скважин (процессы вытеснения нефти из продуктивного пласта, аналитические уравнения, скинфактор, моделирование процесса добычи в программных продуктах);
 - экономика заканчивания скважин в части капитальных и операционных затрат.

Многоствольные и многозабойные скважины, уровни TAML. Забуривание боковых стволов в действующих скважинах:

- мнозабойные скважины;
- многоствольные скважины;
- классификация уровней ТАМL;
- забуривание боковых стволов с ликвидацией и без ликвидации основного ствола.

Интеллектуальные скважины. Применение электрических и гидравлических клапанов контроля притока:

- особенности интеллектуального заканчивания скважин;
- типы интеллектуальных систем;
- критерии применения интеллектуальных скважин на проекте;
- типы применяемого оборудования для интеллектуальных скважин (гидравлические, электрогидравлические, электрические клапаны контроля притока с линией управления, беспроводные электрические клапаны контроля притока).

Пассивные и активные устройства регулирования притока. Технологии управляемых хвостовиков:

- пассивные устройства регулирования притока;
- активные устройства регулирования притока;
- технологии управляемых хвостовиков.

Оптоволоконные системы. Подготовка и расчеты для спуска в горизонтальные скважины. Сравнение различных типов заканчивания:

- оптоволоконные системы мониторинга;
- инженерная подготовка к спуску;
- сравнение технологических и экономических показателей скважин, оборудованных управляемыми хвостовиками, и интеллектуальных скважин.

Особенности работы горизонтальных скважин при длительной эксплуатации:

- особенности работы горизонтальных скважин при длительной эксплуатации;
- необходимость проведения и основные типы ремонтных работ.

Текущие и капитальные ремонты горизонтальных скважин. Подбор оборудования. Координация сервисов:

- особенности проведения текущих ремонтов горизонтальных скважин;
- особенности проведения капитальных ремонтов горизонтальных скважин;
- подбор оборудования для проведения ремонтов скважин. Российские и зарубежные технологии:
 - планирование работ и координация сервисов при проведении ремонтов скважин;
 - оценка экономической эффективности проведения ремонтов.

Внутрискважинные исследования и работы на койлтюбинге и каротажном кабеле:

- концепция и понятие rigless-технологий;
- внутрискважинные работы и исследования на койлтюбинге;
- внутрискважинные работы и исследования на каротажном кабеле;
- внутрискважинные инструменты и тракторы.

Особенности проведения стимулирования горизонтальных скважин. Отказ от TKPC в пользу rigless-технологий:

- кислотные обработки протяженных хвостовиков;
- проведение многостадийного ГРП с различными типами устройств;
- отказ от классических ремонтов скважин в пользу rigless-технологий.

Специальные практические кейсы для рассмотрения:

- 1. Пятилетний опыт эксплуатации четырехзонной интеллектуальной скважины.
- 2. Эволюция заканчивания скважин на примере морского месторождения.
- 3. Результаты применения электрического двухстадийного интеллектуального заканчивания «Манара».
- 4. Забуривание бокового ствола на реальных примерах (с ликвидацией основного ствола, с глушением основного ствола, с перекрытием основного ствола без глушения).
 - 5. Российские производители внутрискважинного оборудования.
- 6. Реальные примеры проведения ремонтов скважин с большим отходом от вертикали.
- 7. Альтернативные технологии проведения ремонтов скважин с использованием каротажного подъемника.

Календарный учебный график:

No	Наименование модулей			Уче	бные	дни	
	·	часов	1	2	3	4	5
1	Типы скважин. Области применения и основные различия. Скважины с большим отходом от вертикали.	3					
2	Внутрискважинное и устьевое оборудование. Расчет притока нефти в скважину. Экономика заканчивания скважин.	5	8				
3	Многоствольные и многозабойные скважины, уровни TAML. Забуривание боковых стволов в действующих скважинах.	4		8			
4	Интеллектуальные скважины. Применение электрических и гидравлических клапанов контроля притока.	4		0			
5	Пассивные и активные устройства регулирования притока. Технологии управляемых хвостовиков.	5					
6	Оптоволоконные системы. Подготовка и расчеты для спуска в горизонтальные скважины. Сравнение различных типов заканчивания	3			8		
7	Особенности работы горизонтальных скважин при длительной эксплуатации	2				0	
8	Текущие и капитальные ремонты горизонтальных скважин. Подбор оборудования. Координация сервисов.	6				8	
9	Внутрискважинные исследования и работы ка койлтюбинге и каротажном кабеле	4					8
10	Особенности проведения стимулирования	3					

		горизонтальных скважин. Отказ от TKPC в пользу rigless- технологий.						
Ī	11	Итоговая аттестация	1					
		ИТОГО	40	8	8	8	8	8

ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ

Трудоемкость:	40 часов			
Форма обучения:	очная			
Виды занятий:	лекционные, практические			
Формы аттестации: текущий контроль, итоговое тестирование				
Режим занятий: 8 академических часов в день				
Срок обучения:	5 дней			

Категория слушателей:

Курс повышения квалификации могут пройти лица, имеющие (получающие) высшее или среднее профессиональное образование по соответствующей специальности либо прошедшие профессиональную переподготовку по соответствующему направлению.

Технологии и методы обучения:

лекция, семинар, самостоятельная домашняя работа, кейс-стади, решение задач, проведение расчетов, построение графиков, групповая дискуссия, упражнения, просмотр видео.

Учебно-методическое обеспечение:

презентации по модулям курса, раздаточный материал, демонстрация моделей противопесочных фильтров, демонстрация моделей устройств контроля притока, демонстрация систем управления клапанами интеллектуальных скважин.

Материально-техническое обеспечение:

аудитория, столы, стулья, ноутбуки с доступом в Интернет, мультимедийный проектор и экран, презентер, аудиоколонки, магнитно-маркерная доска.

Кадровое обеспечение:

Образовательный процесс обеспечивается научно-педагогическими кадрами, имеющими базовое образование, соответствующее профилю программы, и ученую степень или опыт деятельности в соответствующей профессиональной сфере и систематически занимающимися научной и/или научно-методической деятельностью, преподаватели из числа действующих руководителей и ведущих работников профильных организаций.

Информационное обеспечение:

- 1. Стивен Дайери др. Интеллектуальное заканчивание: автоматизированное управление добычей // Нефтегазовое обозрение. 2007-2008 гг. 18 стр.
- 2. Оптимизация дебита в скважинах с увеличенной поверхностью вскрытия пласта // Нефтегазовые технологии № 9 сентябрь 2009 стр. 34.

- 3. Ефимов Н.Н. Технологии ОВП в нефтяных скважинах и пути повышения РИР // Инженерная практика -2011 №7 стр. 4-17.
- 4. Интеллектуальные скважины открывают новые горизонты // Российские нефтегазовые горизонты. 2014 -№ 10.
- 5. Елисеев Д., Голенкин М., Сеньков А., Латыпов А., Булыгин И., Ружников А., Буянов М., Кашлев А. Новое видение в разработке шельфовых месторождений Северного Каспия: Интеллектуальные многоствольные скважины ТАМL5. Предпосылки, Реализация и Результаты (SPE-181901).
- 6. Голенкин М., Сеньков А., Шестов С., Булыгин И., Блехман В., Готтумуккала В. Оптимизация добычи в режиме реального времени на «интеллектуальной» скважине на шельфе Каспийского моря (SPE-176648).
- 7. Голенкин М., Завьялов А., Абсалямов Р., Нухаев М., Рымаренко К., Столбоушкин Е., Сниткоф Д., Осаньяйе Г., Абделфатах Т. Опыт применения заканчивания с УКП для выравнивания профиля притока на месторождении имени Филановского в России (SPE-191549).
- 8. Елисеев Д., Бяков А., Сеньков А., Шафиков Р., Маврин А., Лесной А., Сибилев М., Булыгин И., Эволюция внедрения новых технологий заканчивания на скважинах месторождения им. Ю. Корчагина и опыт эксплуатации интеллектуальных скважин (SPE-196923).

Электронные ресурсы:

- 1. http://elibrary.ru/ Научная электронная библиотека.
- 2. http://www.edu.ru/ Российское образование: федеральный образовательный портал.
- 3. http://www.ogt.su/ журнал «Нефтегазовые технологии», справочники, отраслевая статистика.
- 4. http://vniioeng.mcn.ru/inform/geolog/ Всероссийский научно-исследовательский институт организации, управления и экономики нефтегазовой промышленности (научно-технические журналы, книги).

Документ о квалификации:

Лицам, успешно освоившим соответствующую дополнительную профессиональную программу и прошедшим итоговую аттестацию, выдается удостоверение о повышении квалификации. При освоении дополнительной профессиональной программы параллельно с получением среднего и (или) высшего образования удостоверение о повышении квалификации выдается одновременно с получением соответствующего документа об образовании и о квалификации.

ОЦЕНКА КАЧЕСТВА ОСВОЕНИЯ ПРОГРАММЫ

Формы аттестации:

- 1. Предварительный контроль в форме письменного опроса.
- 2. Текущий контроль в форме устного опроса, решения и проверки задач, защиты проекта.
 - 3. Итоговый контроль в форме письменного тестирования.

Оценочные материалы:

Тест для предварительного контроля, тест для итогового контроля

Образец теста для предварительного контроля:

- 1. Опишите основные различия между вертикальными, наклонно-направленными и горизонтальными скважинами.
 - 2. Чем многозабойные скважины отличаются от многоствольных?
 - 3. Сколько уровней многоствольного заканчивания Вы знаете?
 - 4. Напишите свое определение интеллектуальной скважины.
 - 5. Какие типы клапанов контроля притока Вы знаете?
- 6. В чем заключается основное отличие пассивных и активных устройств регулирования притока в хвостовике?
 - 7. Опишите основные методы стимулирования притока скважин.
 - 8. Какие виды ремонтов скважин вы знаете?
- 9. При помощи каких способов возможна доставка оборудования на забой действующей скважины?
 - 10. Напишите свое определение rigless-технологии.

Образец теста для итогового контроля:

- 1. Основные отличия вертикальных, наклонно-направленных и горизонтальных скважин.
- 2. Сколько существует уровней многоствольного заканчивания и в чем принципиальное отличие между ними.
 - 3. Критерии забуривания бокового ствола с ликвидацией основного или без нее.
- 4. Основные типы используемого оборудования нижнего, промежуточного и верхнего заканчивания.
 - 5. Отличия пассивных и активных устройств регулирования притока.
- 6. Ключевые отличия используемого оборудования для интеллектуального заканчивания.
 - 7. Отличие между интеллектуальным заканчиванием и управляемыми хвостовиками.
 - 8. Критерии выбора между классическим ремонтом скважины и технологией Rigless.
- 9. Основные типы оборудования и технологии проведения многостадийного разрыва пласта.
 - 10. Типы используемых устройств для мониторинга работы горизонтального ствола.

Оценка результатов аттестации:

Для определения результатов аттестации устанавливается диапазон баллов, которые необходимо набрать для того, чтобы получить отличную, хорошую, удовлетворительную или неудовлетворительную оценки.

Шкала перевода результатов тестирования в оценку результатов аттестации:

Процент выполненных заданий теста	Оценка	Результат аттестации
85-100	Отлично	Слушатель аттестован
65-84	Хорошо	
50-64	Удовлетворительно	
0-49	Неудовлетворительно	Слушатель не аттестован