

ДОПОЛНИТЕЛЬНАЯ ПРОФЕССИОНАЛЬНАЯ ПРОГРАММА

ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

«МОДЕЛИРОВАНИЕ НЕФТЕГАЗОВЫХ СИСТЕМ ОСАДОЧНО-ПОРОДНЫХ БАССЕЙНОВ МИРА»

Разработал:

преподаватель С.М. Астахов, доктор геол.-минер. наук

СОДЕРЖАНИЕ

Ι.	ОБЩАЯ ХАРАКТЕРИСТИКА ПРОГРАММЫ	
	1.1. Нормативные основания разработки программы	3
	1.2. Цель	3
	1.3. Задачи	3
	1.4. Планируемые результаты обучения	3
	1.5. Характеристика профессиональной деятельности слушателей	4
2.	СОДЕРЖАНИЕ ПРОГРАММЫ	
	2.1. Учебный план	4
	2.2. Рабочие программы (тематическое содержание) модулей	5
	2.3. Календарный учебный график	6
3.	ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ	
	3.1. Категория слушателей	7
	3.2. Технологии и методы обучения	7
	3.3. Учебно-методическое обеспечение	7
	3.4. Материально-техническое обеспечение	7
	3.5. Кадровое обеспечение	7
	3.6. Информационное обеспечение	7
	3.7. Электронные ресурсы	7
	3.8. Документ о квалификации	8
4.	ОЦЕНКА КАЧЕСТВА ОСВОЕНИЯ ПРОГРАММЫ	
	4.1. Формы аттестации	8
	4.2. Оценочные материалы	8
	4.3. Оценка результатов аттестации	9

ОБЩАЯ ХАРАКТЕРИСТИКА ПРОГРАММЫ

Нормативные основания разработки программы:

- 1. Федеральный закон № 273-ФЗ «Об образовании в Российской Федерации» от 29.12.2012 г.
- 2. Приказ Министерства образования и науки РФ № 499 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным профессиональным программам» от 01.07.2013 г.
- 3. Профессиональные стандарты Код 19 «Добыча, переработка, транспортировка нефти и газа».
- 4. Проекты примерных образовательных программ по направлениям бакалавриата 210000 «Прикладная геология, горное дело, нефтегазовое дело и геодезия».
- 5. ФГОС ВО по направлениям бакалавриата и магистратуры 210000 «Прикладная геология, горное дело, нефтегазовое дело и геодезия».

Цель:

совершенствование профессиональных компетенций специалистов в применении метода бассейнового моделирования при решении поисковых задач на различных стадиях геологоразведочных работ в нефтегазовой геологии с учетом преимуществ, недостатков и ограничений данного метода в зависимости от объектов исследования.

Задачи:

- изучить вопросы использования бассейнового моделирования, построения структурной модели, геологической модели, структурного каркаса;
 - овладеть навыками построения литолого-геохимической модели;
- понять тепловую эволюцию бассейна, литологическое расчленение и геохимию нефтегазоматеринских свит;
 - узнать дополнительный фактор преобразования органического вещества;
- рассмотреть вопросы калибровки бассейновых моделей, расчета миграции и аккумуляции бассейна;
- исследовать практические примеры бассейнового моделирования в различных условиях.

Планируемые результаты обучения:

усовершенствованные профессиональные компетенции, выраженные в способностях:

- собирать и подбирать необходимого и достаточного исходного материала (данных) для проведения бассейнового моделирования;
- изучать алгоритмы построения геолого-геохимических моделей, их калибровки в зависимости от различных геодинамических типов бассейнов, формационных особенностей;
- выделять очаги генерации углеводородов, оценивать вероятность наличия залежей нефти и газа, проводить прогнозную оценку их масс и объемов по результатам бассейнового моделирования на региональных этапах прогноза нефтегазоносности;
- на поисково-оценочных этапах прогноза нефтегазоносности выделять наиболее перспективные объекты;

- на этапах разведки месторождений и их доразведки прогнозировать в залежах состав углеводородов, их физико-химические свойства, прогнозировать изменение давления в разрезе отложений с глубиной.

Характеристика профессиональной деятельности слушателей:

Область профессиональной деятельности слушателей, освоивших программу курса повышения квалификации, включает реализацию и управление технологическими процессами и производством, методологию и методы проектирования и конструирования, научные исследования и разработки в сегменте топливной энергетики, в т.ч. освоение месторождений, транспортирование и хранение углеводов, исследование недр и поверхности Земли, рациональное использование и охрана земельных и углеводородных ресурсов и др.

Объектами профессиональной деятельности слушателей являются технологические процессы и устройства для строительства, ремонта, восстановления, добычи, промыслового контроля, транспортирования, хранения и сбыта нефти, нефтепродуктов и сжиженных газов, поверхность и недра Земли, геодинамические явления и процессы, территориально-административные образования, информационные системы и инновационные технологии и др.

Виды профессиональной деятельности слушателей: производственно-технологическая, организационно-управленческая, экспериментально-исследовательская, проектная, проектно-изыскательская, научно-исследовательская.

СОДЕРЖАНИЕ ПРОГРАММЫ

Учебный план дополнительной профессиональной программы определяет перечень, трудоемкость, последовательность и распределение учебных модулей, иных видов учебной деятельности обучающихся и формы аттестации.

Учебный план:

№	Наименование модулей		Форма		
		Всего	в том числе:		аттестации
			лекционные практические		
			занятия	занятия	
1	Введение	4	4		Текущий
		4	4	-	контроль
2	Построение структурной модели	4		4	Текущий
	Построение структурной модели	4	_	4	контроль
3	Структурный каркас	2	2		Текущий
		2	2	-	контроль
4	Тепловая эволюция бассейна	2	2		Текущий
		2	2	-	контроль
5	Построение структурной модели	4		4	Текущий
		4	-	4	контроль
6	Литологическое расчленение	2	2		Текущий
		2	2	-	контроль
7	Геохимия нефтегазоматеринских	2	2		Текущий
	свит	2	2	-	контроль
8	Построение литолого-	4		4	Текущий
	геохимической модели	4	-	4	контроль
9	Дополнительный фактор				Текущий
	преобразования органического	2	2	-	контроль
	вещества				•
10	Калибровка бассейновых	2	2	-	Текущий

	моделей				контроль
11	Расчет миграции и аккумуляции	4	_	$\it \Delta$	Текущий
	бассейна	7		т	контроль
12	Миграция и аккумуляция нефти	1	1		Текущий
	и газа	1		_	контроль
13	Практические примеры				Текущий
	бассейнового моделирования в	3	3	-	контроль
	различных условиях				
14	Калибровка рассчитанной	2		2	Текущий
	модели	3	_	3	контроль
15	Итоговая аттестация	1	-	1	Тестирование
	ИТОГО	40	20	20	

Рабочие программы (тематическое содержание) модулей:

Введение.

Цели и задачи бассейнового моделирования. Примеры. Стадии и варианты построения моделей

Возможности использования бассейнового моделирования в бассейнах РФ и Казахстана. Задачи решаемые при моделировании на различных этапах геологоразведочных работ. Осадочные бассейны России и Казахстана.

Построение структурной модели.

Оцифровка двухмерного геологического разреза.

Структурный каркас.

Построение геологической модели, структурного каркаса. Палеоструктурные реконструкции.

Тепловая эволюция бассейна.

Граничные условия. Кондуктивная модель и прогноз тепловых потоков. Конвективный тепловой поток и корректировка термограмм.

Построение структурной модели.

Оцифровка двухмерного геологического разреза. Хроностратиграфическая привязка горизонтов.

Литологическое расчленение.

Построение литолого-фациальной, формационной модели. Палеобатиметрия.

Геохимия нефтегазоматеринских свит.

Общие вопросы генетики первичной биомассы. Катагенез органического вещества. Факторы катагенеза.

Кинетика преобразования органического вещества. Библиотеки кинетических спектров. Средние значения нефтегазоматеринских свит РФ и СНГ.

Построение литолого-геохимической модели.

Литологическое расчленение разреза. Определение геохимических параметры НГМТ. Назначение граничных условий: палеотепловые потоки, палеоглубины, палеоклимат.

Дополнительный фактор преобразования органического вещества.

Изменение полимерной структуры керогена под воздействием тектонического стресса. Причины и последствия для катагенеза и генерационного потенциала.

Калибровка бассейновых моделей.

Применение специальных методических приемов для соотнесения наблюдаемой катагенетической зональности и моделируемой. Динамокатагенез.

Расчет миграции и аккумуляции бассейна.

Устранение невязок. Первая калибровка модели.

Миграция и аккумуляция нефти и газа.

Давление и проницаемость пород. Первичная эмиграция. Методики расчета вторичной миграции. Увеличение проницаемости в сейсмически активных регионах.

Практические примеры бассейнового моделирования в различных условиях.

Рассмотрение конкретных примеров применения бассейнового моделирования к решению задач поиска нефти и газа на разных этапах ГРР и с различной геологической обстановкой.

Калибровка рассчитанной модели.

Подход различных историко-геологических сценариев моделирования.

Календарный учебный график:

№	Наименование модулей	Всего	, ,				
		часов	1	2	3	4	5
1	Введение	4	8				
2	Построение структурной модели	4					
3	Структурный каркас	2					
4	Тепловая эволюция бассейна	2		8			
5	Построение структурной модели	4					
6	Литологическое расчленение разреза	2					
7	Геохимия нефтегазоматеринских свит	2			8		
8	Построение литолого-геохимической модели	4					
9	Дополнительный фактор преобразования органического вещества	2				0	
10	Калибровка бассейновых моделей	2				8	
11	Расчет миграции и аккумуляции бассейна	4					
12	Миграция и аккумуляция нефти и газа	1					
13	Практические примеры бассейнового моделирования в различных условиях	3					8
14	Калибровка рассчитанной модели	3					
15	Итоговая аттестация	1					
	ИТОГО	40	8	8	8	8	8

ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ

Трудоемкость:	40 часов			
Форма обучения:	очная			
Виды занятий:	виды занятий: лекционные, практические			
Формы аттестации:	текущий контроль, итоговое тестирование			
Режим занятий:	8 академических часов в день			
Срок обучения:	5 дней			

Категория слушателей:

Курс повышения квалификации могут пройти лица, имеющие (получающие) высшее или среднее профессиональное образование по соответствующей специальности либо прошедшие профессиональную переподготовку по соответствующему направлению.

Технологии и методы обучения:

лекция, практические занятия, полевая геологическая экскурсия.

Учебно-методическое обеспечение:

презентации по модулям курса, раздаточный материал, обучающие видеофильмы, монография автора курса по моделированию УВ-систем.

Материально-техническое обеспечение:

аудитория, столы, стулья, ноутбуки с доступом в Интернет, мультимедийный проектор и экран, презентер, аудиоколонки, магнитно-маркерная доска, комплект лицензионного программного обеспечения (MS Power Point, Word, Excel и др.), коллекция образцов горных пород.

Кадровое обеспечение:

Образовательный процесс обеспечивается научно-педагогическими кадрами, имеющими базовое образование, соответствующее профилю программы, и ученую степень или опыт деятельности в соответствующей профессиональной сфере и систематически занимающимися научной и/или научно-методической деятельностью, преподаватели из числа действующих руководителей и ведущих работников профильных организаций.

Информационное обеспечение:

- 1 . Астахов С.М. Геореактор. Алгоритмы нефтегазообразования. Ростов-на-Дону, КОНТИКИ, 2015, 256 с.
- 2. Hantschel T., Kauerauf A.I. Fundamentals of Basin and Petroleum Systems Modeling. Berlin, Springer, 2009. 476 p.
- 3. Галушкин Ю.И. Моделирование осадочных бассейнов и оценка их нефтегазоносности. Москва, Научный мир, 2007. 456 с.
- 4. Резников А.Н. Геосинергетика нефти и газа. Ростов-на-Дону, ЦВВР, 2008. 303 с.
- 5. Allen P.A., Allen J.R. Basin Analysis: Principles and application. London, Blackwell Sciences, 2005.562 p.
- 6. Бочкарев А.В., Бочкарев В.А. Катагенез и прогноз нефтегазоносности недр. М. Внииоэнг, 2006.

Электронные ресурсы:

- 1. www.georeactor.ru Официальный сайт Российского сообщества бассейновых модельеров
 - 2. www.kontiki-exploration.com Официальный сайт ООО "НПК "КОНТИКИ"

Документ о квалификации:

Лицам, успешно освоившим соответствующую дополнительную профессиональную программу и прошедшим итоговую аттестацию, выдается удостоверение о повышении квалификации. При освоении дополнительной профессиональной программы параллельно с получением среднего и (или) высшего образования удостоверение о повышении квалификации выдается одновременно с получением соответствующего документа об образовании и о квалификации.

ОЦЕНКА КАЧЕСТВА ОСВОЕНИЯ ПРОГРАММЫ

Формы аттестации:

- 1. Предварительный контроль в форме устного или письменного опроса/тестирования, решения и проверки задач, собеседования.
- 2. Текущий контроль в форме устного или письменного опроса, решения и проверки задач, наблюдения за слушателями, собеседования.
- 3. Итоговый контроль в форме опроса / тестирования, решения и проверки задач, проекта.

Оценочные материалы:

Тест для предварительного контроля, тест для итогового контроля

Образец теста для предварительного контроля:

- 1) Приведите основные причины вариаций температурного режима осадочных пород и подстилающей литосферы.
- 2) Аномально большие значения теплового потока: где встречаются, каких значений достигается, причины?
 - 3) Геотермический градиент как индикатор температурного режима осадочного бассейна.
 - 4) Какой закон описывает процесс уплотнения пород в осадочном бассейне?
- 5) У какой породы будет больше коэффициент уплотнения на глубине 4000 м: у песчаника или у глины? Почему?

Образец теста для итогового контроля:

- 1) Теплофизические свойства горных пород (теплопроводность, удельная теплоемкость, температуропроводность, коэффициенты объемного и линейного расширения): дать определение каждого, написать определяющее уравнение, пределы вариаций значений, единицы измерения.
 - 2) Что такое «backstripping»?
- 3) Что такое плотность минералов, породы. Среднее значение плотности (г/см3) для основных типов осадочных пород: известняки, песчаники, алевролиты, мергели, глины, каменная соль, уголь.
- 4) Перечислите принципы приближённых методов расчёта отражательной способности витринита в процессе погружения бассейна (через температурно-временной индекс и оценку температуры погружающихся пород).
- 5) Какие существуют алгоритмы численных расчётов отражательной способности витринита в пакетах программ по бассейновому моделированию?

Оценка результатов аттестации:

Для определения результатов аттестации устанавливается диапазон баллов, которые необходимо набрать для того, чтобы получить отличную, хорошую, удовлетворительную или неудовлетворительную оценки.

Шкала перевода результатов тестирования в оценку результатов аттестации:

Процент выполненных заданий теста	Оценка	Результат аттестации
85-100	Отлично	Слушатель аттестован
65-84	Хорошо	
50-64	Удовлетворительно	
0-49	Неудовлетворительно	Слушатель не аттестован